欢迎进入bsport体育官方网站入口(中国)·平台下载注册登录
在线留言 | Bsport体育官方网站
bsport体育官方网站入口 医药中间体  |  农药中间体  |  UV油墨涂料、紫外光固化单体  |  
bsport体育官方网站入口

Bsport体育官方网站

咨询热线15970229749
  • 联系人:胡先生
  • 手机:15970229749
  • 地址:江西省吉安市峡江县工业园区
bsport体育官方网站入口·最新Nature子刊:电化学合成氨
发布时间:2024-09-08 06:33:11 来源:bsport体育平台 作者:Bsport体育官方网站

  合成氨已经塑造了我们现代文明,并且将继续在我们地球的未来发挥关键作用,因为氨是生产肥料、聚合物、药品和精细化学品的原料。目前,工业上合成氨是通过哈伯-博施(Haber-Bosch)过程,使用铁基催化剂在高温高压条件下进行(即350-450摄氏度和100-200巴)和使用化石资源产氢,这贡献了全球约1.3%的二氧化碳排放量。

  哈伯-博施过程要求非常高的压力,并需要巨额的资本投资和大型的中心化工厂,而肥料的利用则是分散化的。随着可再生电力价格的下降,电化学合成氨提供了在小型设备中进行分散化肥料生产,并具有和分散式可再生电力源相结合的潜力。这一发展有望降低偏远地区肥料的成本。迄今为止,利用氮气和水作为原料,并由可再生能源驱动在常温常压下进行电化学合成氨的最有前景和可靠的方法之一是在非水溶剂中进行锂介导氮气还原反应(Li-NRR)。1930年,Fichter等人首次在醇溶液中的卤化锂中探索了Li-NRR。

  1993年,Tsuneto等人使用四氢呋喃(THF)和少量乙醇(EtOH)作为电解液进一步研究了Li-NRR。2019年,丹麦科技大学Ib Chorkendorff院士课题组提出了一个严格的程序,通过气体纯化和定量同位素测量来避免阳性数据,验证了在Li-NRR过程中产生的氨是来自氮气还原。此后,已提出了许多提高Li-NRR系统性能的策略。最近,在压力为15 bar或20 bar的间歇性反应器中实现了高电流密度(-1 A cm-2)和接近100%的产氨法拉第效率,但溶剂在阳极被氧化来提供合成氨所需的质子。通常情况下,到目前为止发表的大多数Li-NRR研究都使用牺牲性溶剂作为质子源。

  然而,为了现实的可行性,质子必须来自氢(或水),因此丹麦科技大学Ib Chorkendorff院士和Jens K. Nørskov院士课题组已提出将氢氧化反应(HOR)作为Li-NRR系统的阳极反应(Science, 2023, 379(6633): 707-712.),以提供可持续的氢源。在一个连续流反应器中,通过NRR与HOR在常压和常温下耦合,实现了61%的产氨法拉第效率。使用原位同位素标记质谱揭示了氨中的氢来自阳极氢气氧化,详细可参考之前推送。

  一般来说,Li-NRR过程包含三个步骤来产生氨。首先,Li+在阴极上被电化学还原成金属锂,并能够表面解离N2生成锂表面氮化物,该物质由质子穿梭剂(Proton Shuttle,例如EtOH)质子化,释放氨和释放Li+循环使用。质子穿梭剂对Li-NRR系统的性能具有决定性影响。质子穿梭剂的筛选最早由Krishnamurthy等人在两室电化学电池中进行,通过使用多孔Daramic分离器在通过7.2 C的电量(6分钟)后进行。 他们发现1-丁醇是最有效的质子穿梭剂(产氨法拉第效率为15.6%),苯酚(PhOH)是没有活性的质子穿梭剂(氨法拉第效率为0%)。Kamlet-Taft参数被用作描述符来解释对氨产生活性的影响。随后的研究解释了质子穿梭剂对性能的影响是由于质子穿梭物改变了固体电解质界面(SEI)的性质。Suryanto等人发现膦基离子液体([P6,6,6,14][eFAP])可以通过与乙酸化学反应来再质子化膦阳离子,但尚未在真正的Li-NRR过程(NRR耦合HOR)中进行检验。在15 bar的间歇性反应器中,使用双(三氟甲基磺酰)氨基锂(LiTFSI)作为锂盐进行质子穿梭剂筛选。上述这些质子穿梭剂筛选工作尝试将质子穿梭剂的pKa与Li-NRR的性能相关联,但相关性并不强。

  到目前为止,还没有实验研究在阳极侧耦合HOR的Li-NRR过程中筛选质子穿梭剂。因此,质子穿梭剂是否实际上能够将HOR生成的质子输送到阴极参与氨的生产仍然未知。质子穿梭在Li-NRR过程中的质子转移过程中起着关键作用,但是Li-NRR过程中的结构-活性关系和质子穿梭剂的作用仍然缺乏深入的理解,对于在实际Li-NRR系统中有效质子穿梭剂的结构-活性关系和设计原则尚未确立。

  基于这一难题,丹麦科技大学Ib Chorkendorff院士和Jens K. Nørskov院士课题组在连续流反应器中进行了质子穿梭剂筛选实验,在经过700 C的电量(超过2.5小时)后,在阳极耦合HOR。提出了如何证明质子穿梭剂的有效性通用程序,并在实际Li-NRR过程中建立了有效质子穿梭剂的设计原则。

  与先前的研究相反,发现苯酚(PhOH)可以在常压和常温下实现72 ± 3%的最高法拉第效率和15 ± 1%的能量效率,超过了之前常用的乙醇。实验和理论传质模型构建了质子穿梭剂的构效关系,Li-NRR性能依赖于质子穿梭剂的pKa(THF中的计算值)和其扩散系数。这一发现为锂介导电化学合成氨中高效质子穿梭剂的合理设计原则提供了一个全面的框架。

  如图1所示,在阳极PtAu催化剂上进行氢气氧化反应(HOR)产生质子,这些质子(H+)与质子穿梭剂去质子化的形式(B-)结合形成质子穿梭剂的质子化形式(BH),随后其质子化形式(BH)扩散到阴极,质子化金属锂表面的氮化物,释放出氨和去质子化的形式(B-)的质子穿梭剂得以再生。质子穿梭剂在Li-NRR过程中的特定作用和涉及的反应,决定对有效质子穿梭剂的一些要求和设计原则:

  (1)质子穿梭剂应包含能够给予/接受质子的功能基团(例如,-OH,-COOH和-CHO-)或特定的基团(例如,α氢原子和-CH2-)。

  (2)质子穿梭剂在电解液中应具有适当的pKa,即在质子化能力和最小化副反应(如氢气析出反应(HER))之间达到平衡。如果质子穿梭剂的pKa太小(酸性较强),它将与金属锂直接反应,阻碍N2的活化,或导致在阴极上竞争性HER反应占主导地位。相反,如果质子穿梭剂的pKa太大(酸性较弱),其质子化能力将减弱,导致对锂表面的氮化物或分离的氮原子不能不充分质子化。

  (3)质子穿梭剂应具有形成阴极上的功能性SEI层的能力,使质子和锂离子能够通过SEI扩散。例如,EtOH在形成SEI层方面起着重要作用。

  (4)质子穿梭剂的去质子形式(B-)应具有良好的电化学稳定性和化学稳定性。质子穿梭剂的高稳定性有助于抑制副反应,并确保操作系统的整体稳定性。

  (5)质子穿梭剂应展现出最佳的扩散速率,以有效地控制锂氮化物表面可用质子的浓度。位阻效应和氢键作用都可以显著影响电解液中质子穿梭剂的扩散速率。

  (6)质子穿梭剂和Li-NRR系统应彼此具有优异的兼容性。例如,质子穿梭剂不应中毒HOR催化剂。由于担心阳极催化剂的毒化问题,在该研究中避免测试硫醇作为质子穿梭剂。

  基于这些有效质子穿梭剂的设计原则,包括醇类、胺类、酚类、膦铵盐和羧酸在内的各类质子穿梭剂筛选实验是常温常压下在连续流反应器中进行,反应器配备有效面积为25 cm2的气体扩散电极,在实验中唯一的变量是质子穿梭剂的不同,其他测试条件均相同,采用电位脉冲法(-6 mA cm-2持续1分钟,然后0 mA cm-2持续1分钟),通过总电量为700 C,获得质子穿梭剂的法拉第效率。在电解液中不添加质子穿梭剂时,约60%的氨是从电极沉积物中产生,这意味着H2O、THF以及THF中的杂质是相对较弱的质子穿梭剂。

  (2)吡啶8和质子海绵11等胺类虽然具有碱性基团,但不能轻易地提供或接受质子,因此是较差的穿梭剂。

  (3)膦基离子液体([P6,6,6,14][eFAP])的FE较低,不能及时质子化所产生的锂氮化物,这可能归因于其难以携带质子和较低的扩散速率,与之前在间歇性反应器中的报道不同(Science, 2021, 372, 1187-1191.)。

  (4)在评估的各种质子穿梭剂中,苯酚在37 mM的最佳浓度下,在Li-NRR过程中获得了最高的FE为72 ± 3%,与之前在间歇性反应器中得到的结论相反(ACS Cent. Sci., 2021,7, 2073-2082.)。

  随后,将更多的实验以研究苯酚作为质子穿梭剂为例,建立证明质子穿梭剂的有效性通用程序。之前的工作中进行了Li-NRR的定量15N2同位素标记实验(Science, 2023, 379(6633): 707-712.),因此,本文未展示同位素标记实验。 如图2a所示,苯酚的恒电流曲线表明,其平均阳极电位和阴极电位分别约为0.7 V和-3.6 V,FE依赖于苯酚的浓度,当在37 mM的最佳浓度下时,FE为72 ± 3%(图2b)。这种浓度依赖性是由于苯酚中存在的质子直接影响了Li-NRR系统中可用质子的浓度。与不使用质子穿梭剂相比,使用苯酚产生的氨主要分布在气相和电解液中,占总生成氨的90%以上(图2c)。

  在没有质子穿梭剂的情况下,阴极的静息电位为-3 V vs. Pt,这可以作为在质子穿梭剂存在的情况下的静息电位的基准。当将化合物2与6、5与7、18与19以及12与13进行比较时,当质子穿梭剂被较大的基团取代时,电极沉积物中氨的比例更高(即质子穿梭剂无法及时质子化LiNxHy而导致LiNxHy在阴极表面积累),这种更高的电极沉积物中氨比例表明质子穿梭剂的质子化能力较低,这也反映在OCV期间静息电位接近-3 V vs. Pt。

  为了进一步证明质子穿梭剂在Li-NRR过程中转移质子的能力,作者提出了一种使用质子穿梭剂的去质子化形式(B-)评估其质子转移能力的程序。此外,当确定了最有效的质子穿梭剂后,作者建议使用原位同位素标记的质谱(即氘气D2氧化反应)来确认生成的氨中的氢来自于HOR。

  首先,苯酚被替换为苯酚锂(PhOLi)以评估其在Li-NRR过程中的性能。如图2d所示,苯酚锂的CP显示其阳极和阴极电位与图2a中所示的相一致。与苯酚不同,苯酚锂的FE不受苯酚锂浓度的影响,这表明了电解液中可用质子浓度仅受HOR的电流密度影响。值得注意的是,在50 mM的苯酚锂浓度下实现了74 ± 2%的F。


bsport体育官方网站入口 上一篇:2024年中国精细化工行业研究报告 下一篇:美股内部交易 森馨于5月1日披露1笔公司内部人交易

Copyright© bsport体育官方网站入口(中国)·平台下载注册登录  技术支持:bsport体育官方网站入口江西华邦.JPG
手机:15970229749 18296669949 胡先生 电话:0796-7183699 
传真:0796-7183699 邮箱:292425343@qq.com 地址:江西省吉安市峡江县工业园区